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1. INTRODUCTION

During the last fifty years considerable literature has grown around the
problem of weighted mean convergence of Lagrange interpolation
polynomials on the zeros of certain orthogonal polynomials with a non­
negative weight function w(x). This topic was first initiated by Erdos and
Turan in a classic paper [3]. Denoting the Lagrange interpolant of degree
n tofby L{(x), Erdos and Turan proved that if w(x»O on (a,b) and
wEL 1[a,b], then

}~moorIL{(x) - f(xW w(x) dx = O. (1)

Later Erdos and Feldheim [2] showed that, for L{(x) based on the zeros
of TchebychefT polynomials of the first kind, and with w(x) = (1 - x 2

) -1/2,

a stronger result holds, viz.,

p= 1, 2, .... (2)

On the other hand, if L{(x) is based on the zeros of TchebychefT
polynomials of the second kind and if w(x) = 1, there exists a continuous
functionffor which limn~ 00 J~ IL'(x) - f(xW dx = 00.

R. Askey [1] has examined the problem in depth and has considered
the case where the nodes are the zeros of Jacobi polynomials,
w(x)= (1-x)~(l+x)/l, 0(, f3~ -!. More recently P. Nevai [9] has gone
further and has obtained necessary and sufficient conditions for mean
convergence of Lagrange and quasi-Lagrange interpolation based on the

* This paper was written during the author's visit at the University of Alberta in 1985-1986.
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zeros of generalized Jaobi polynomials. For other similar results we refer to
Feldheim [4,5], Nevai [8], and Varma and Vertesi [12].

Here we shall be interested in this problem from a new angle recently
introduced by I. H. Sloan [10]. He considered the eigenvalue problem

p(X) u"(x) + q(x) u'(x) + (A + r(x)) u(x) = 0

with the boundary conditions

(3)

cos ocu(a) +sin ocu'(a) = 0, cos {Ju(b) + sin {Ju'(b) = 0, (4 )

(5)

where p E C2[a, b], q EC 1 [a, b], r E C[a, b], p(x) > 0, and q(x), r(x), oc, {J
are all real. Let {uj } go be the eigenfunctions arranged according to increas­
ing eigenvalues Aj and let L~(x) be the unique linear combination of
uo, ..., Un that coincides with f at the (n + 1) zeros of Un + 1(x) that lie in the
open intervals (a, b). Further let

1 (IX q(t) )
w(x) = p(x) exp a p(t) dt .

He has shown that the limit (1) holds for all f EC[a, b], provided f
satisfies f(a)=O if sinoc=O and f(b)=O if sin {J=O. Moreover,
IIL~ -flip:::;: CEn(f) where En(f) is the error of best uniform approximation
to f by a linear combination of uo, ..., Un and C is a constant.

In this paper we adapt the method of Sloan to show that under the
hypotheses (3), (4), and (5), the mean convergence holds even in the
Lp-norm, p ~ 1. Moreover,

IIL~ - flip:::;: CnEn(f),

where Cn=O(nl-l/2P) andfELip[a,b].

p~ 1, (6)

2. PRELIMINARIES AND MAIN RESULT

Let {Ui}~O be the eigenfunctions of (3) and (4) arranged according to
increasing eigenvalues {AJ.i=o.

As it stands, the boundary-value problem is not in self-adjoint form, but
it becomes so on multiplying (3) by the integrating factor w(x) defined by
(5). It then follows from the classical theory that the eigenvalues are real
and have their only accumulation point at + 00, and that the eigen­
functions Uo, U 1, ••• are uniquely determined apart from a multiplicative
factor, and are orthogonal with respect to the weight function w(x).

Moreover, it follows from the work of Gantmacher and Krein
[7, pp. 33-36] that un+1(x) has exactly n+l zeros XO,Xl, ...,Xn in the
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open interval (a, b), and also that the matrix {u i(tj)}7,j=o has nonzero
determinant if to, ..., tn are any distinct points in (a, b). From these two
properties it follows that the interpolant L~=L~ ajuj , which interpolates f
at the zeros of Un + I (x), exists and is unique for every value of n.

Let Un denote the finite dimensional subspace spanned by {vJ j ~ 0'

where

1
vj = Ilu)12 uj

'

b

then (Vi' VJ = (jij' 0 ~ i, j ~ n. Setting Kn(x, y) := L:7=0 vi(x) viy) and putting

i=O, ..., n,

(7)
i, j = 0, 1, ..., n,

we state our main results.

THEOREM 1. Suppose that for n sufficiently large we have

and
n

L II Ak)ll p =c:,
j=O

j=O, ...,n,

p~2,

(8)

(9)

where p is a constant and c: = O(n l -lip). Then L~ exists and is unique for n
sufficiently large and the estimate (6) holds.

THEOREM 2. Under the hypotheses related to the boundary-value problem
(3), (4), and (5), let L~=L:aiui be the interpolant tofon zeros ofun+i(x),
Then (2) holds for all f E Lip[a, b], provided f(a) = 0 if sin IX = 0 and
f( b) =0 if sin f3 =O. Moreover, (6) holds.

The proofs of Theorem 1 and 2 are given in Sections 3 and 4. In order to
prove Theorem 1 we need the following Lemma.

LEMMA 1. Under the conditions of Theorem 1, we have
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for all f E C[a, b], where IILnll p = sUP!EC[a,b] IIL~llp/llflloo, M =
(J: w(x) dx)l/P and 0 <p < 00.

Proof For u E Un' we have

IIL~ -flip = IIL~-u - (f - u)llp~ IIL~-ullp + Ilf- ull p

~ II L nilp Ilf- ull 00 + Mil f - ull 00'

Since u is an arbitrary element of Un'

To prove Theorem 2, we first prove it for the simple differential equation
when p(x) = 1 and q(x) =0, i.e.,

u"(x) + [r(x)+A] u(x)=O (10)

and the boundary conditions (4). Then we extend the result to the more
general situation. To prove Theorem 2 for this special case (10) we need the
following Theorems A and B of Jackson [6, pp. 449,453].

Iff has the series expansion

00

f(x) = L (XjUj(x),
j=O

and if O"n(x):= L7=o (XjUj(x), then we have the following Theorems of
Jackson.

THEOREM A. Iff(x) has a continuous kth derivative ofbounded variation
in the interval 0~ x ~ 71:, while f itself and its (k - 1) derivatives vanish for
x =0 and for x = 71:, and if, furthermore, r(x) has a continuous (k - 2)th
derivative of bounded variation in 0 ~ x ~ 71:, then

f(x) = O"n(x) + 0 (:k)
uniformly throughout the interval.

For the special case k = 1, the theorem is true without the restriction
f(O) = f(7I:) = O.

THEOREM B. Iff(x) satisfies the Lipschitz condition

640/55/2-6
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throughout the interval [0, n], and if f(O) = 0, then in the whole interval

cJ.llog n
If(x)-an(x)1 ~ ,n~2,

n

where c is independent of x, n, and! The restriction on r(x) in (10) is merely
that of continuity.

3. PROOF OF THEOREM 1

We shall show that the nth order matrix A = (Aij) is nonsingular if n is
sufficiently large, from which it will follow that L~ exists and is unique for
large n.

If 111·111 denotes the matrix norm III A III = maxo <;;j <;; n L7= 0 IA ijl, then Con­
dition (8) is equivalent to IliA - 1111 ~ p < 1, where I is the unit matrix of
order n + 1. From this it follows that A is nonsingular, and in fact
III A - IIII ~ (1 - p) -I, so that the inverses are bounded independently of n.

Now set

n

l;(x):= L (A-I)ijA)X),
j=O

i=O, ..., n. (11 )

Then it is easily verified that l;(xj ) = bij' and from this it follows that the
interpolating approximation L~ is given by

n

L~(x)= L l;(x)f(x;).
;=0

(12)

Then on using an argument analogous to that of Sloan, (11) and (12) yield
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By the Minkowski inequality and (9), we have

IILnll p :::::; (1 - p) ~ I c: = O(n l - lip),

and the remainder of the theorem now follows from Lemma 1.

Remark. For p = 2 Sloan has the advantage that he can exploit the
orthogonal property (v j , vj ) = b;; and can thereby find a stronger bound.
For p #- 2 this is not applicable any more and so the result of Sloan cannot
be recovered by setting p = 2.

4. PROOF OF THEOREM 2.

As mentioned earlier, we first prove the result for the simple differential
equation (to) and the boundary condition (4). For this case, the weight
function defined by (5) reduces to w(x) == 1, so that the inner product
becomes (u, v) = S~ u(x) v(x) dx.

If we assume for convenience that the eigenfunctions are normalized by
(u j , u j ) == Ilujll~ = 1, then the orthogonality relation for the eigenfunctions
becomes (u j, u) = b;;, i,j = 0, 1, .... Consequently, the kernel Kn(x, y) can be
written as

n

Kn(x, y) = L uj(x) uj(y),
j=O

which is a symmetric function of x and y.
For Theorem 1 to be applicable we must show that Kn(x, y) and ,1.ix),

j=O, 1, ..., n, satisfy Conditions (8) and (9), where xo, ..., X n are the zeros of
Un+ I(X). Sloan has obtained asymptotic expressions for Kn(x, y) and
Kn(x, x) by means of contour integral methods employed by Titchmarsh to
study Sturm-Liouville series. He has also found asymptotic estimates for
the zeros of Un + I (x). He has shown that for the interpolation points, we
have

n
Kn(x;,x;)=-b-+0(1)

-a

and

max ±IKn(x;, xj)1 = 0 (log n).
O"'J",n ;=0 Kn(x j, x;) n

j#j

Therefore Condition (8) of Theorem 1 is satisfied if n is large enough. We
now aim to show that Condition (9) is also satisfied.
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LEMMA 2. The following estimate holds for p ~ 2:

n

L Iltl/")IIp=c:= O(n l
-

I
/
p

).

i=O

Proof We shall work out in detail the case sin ex = sin {3 = O. A similar
argument yields the result for the cases sin ex ¥- 0, sin {3 = 0 and sin ex i: 0,
sin (3 i: O. If we set

sin(n +1) x
Dn(x) = sin(x/2) ,

then for x i: xi' we have

where

and

with tl = S2, S = (T + it. Here the contour C is the boundary of the rectangle
0::;;; (T::;;; (n +~) n/(b - a), ItI ::;;; (n +~) n/(b - a).

Let exi=n«x-xi(b-a)) and (3i=n«x+xi -2a)/(b-a)). Since

1 [Sin(n + 2) exi exi sin(n + 2) (3i Pi
11'}=(b_a) 2sin(ex)2) cos2"- 2sin({3)2) cos2"

+~ (cos(n + 2) (3i- cos(n + 2) ex)J
we have

III) ::;;;-b1 (ISin(n.+2) exil + Is~n(~7/J2~il + 1),
• - a 2 sm exJ/2 sm }

j=O, ...,n.

Now we show 12,} = 0(1) uniformly for a::;;; x::;;; b. Thus we have

(13 )

a::;;;x::;;;b,
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where c, is independent of x and s. Therefore we have

I '=f 0(_1 e-IIIIX1-XI)d(SZ)
K' I I Z 'CK S

201

where c/s form the boundary of the rectangle in Fig. 1. From the above
estimates, it is easy to see that 13 + Is = 0, lIz +hi ~ cil2, lId ~

2c,(ln(1 +.j2vn), and 114 1 ~c,. Combining these estimates, we see that
IZ,j= 0(1).

Combining this and (13), we then have

and hence

\c4

---+-J-+----+--- a

FIGURE 1
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It is easy to see that

M. R. AKHLAGHI

fb Isin(n + 2) IX IP (b - a) f,,(b-Xj)/(b-a) Isin(n + 2) uIP
___---'-J dx =-- du

a 2 sin IX)2 n ,,(a - xj)/(b - a) 2 sin(u/2)

(b - a) f"(1 + (b-xj)/(b-a» Isin(n + 2) ul P
~-- du

n ,,(a-xj)/(b--a) 2 sin u/2

=(b-a)f" ISin(n+2)uI
P

du
n _" 2 sin u/2

but since Isin(n + 2) ul ~ 2(n + 2) Isin(u/2)1, it follows that

f
" ISin(~+2)uIP du~(n+2)P-2f" ISin(~+2)uI2 du
- It 2 sm u/2 -It 2 sm u/2

=n(n+2)p-1, p~2.

Similarly, we have

fblsin(n+2)pjIP 1
a 2 sin P

j
/2 dx ~ n(n + 2)P- ,

Therefore,

p~2.

and hence

p~2. I

Now the proof of Theorem 2 in the special case (10) follows from the
fact

En(f) ~ If(x) - (J n, 1(x) - (Jn.2(x)1

~ If(a)-(Jn,l(x)1 + If(x)-f(a)-(Jn,2(X)/,

where (J n, 1(x) and (J n. i x) are the corresponding sums formed for the
constant function f(a) and f(x) - f(a), respectively, and hence

(1) log n
En(f) ~ 0 ;; + C -n-'
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Therefore,

[
b JI/P ((1) log n)LIL~{x)-f{xWdx ~cnEn{f)=O{n'-'/p) 0 ;; +c-

n
-

which converges to 0 as n -+ 00. We then have (2) and (6).
We now extend the result to the more general boundary value problem

defined by (3) and (4). The proof is similar to the proof given by Sloan for
the case p = 2. With a similar argument we obtain, for p ~ 2,

(14)

where wp{x) =p{X)(P-2)/4 w{x)P/2 and also [J~ IL~{x) -f{xW wp{x) dX]'/p
~ CnEn{f) where Cn= O{n I - lip). The proof of Theorem 2 stated in Section 1
can be immediately obtained from (14), viz.

rIL~(x) -f{x)l pI2w{x) dx
a

(

b )1/2( b W2{X) )1/2
~ t IL~{x) - f{xW Wp{X) dx LWp(X) dx .

The result also holds if w{x) == 1. However, the weight function given by (5)
is in a sense the natural weight function for this problem.

As an application of this proposition consider the following eigenvalue
problem, based on the Bessel equation

1 (V
2
)u"(X)+~UI{X)+ A- x 2 u{x)=O, O<a<x=b,

with boundary conditions u{a) =u{b) = o. The eigenvalues An = s~ are deter­
mined by Jv{snb) Yv{sna)- Yv{Snb)Jv{sna) =0 and an eigenfuncton Un
corresponding to An is un{x) = Jv{snx) Y.(sna) - Yv{snx) Jv(sna). Then we
have (2) and (6) for allfeLip[a, b].
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